Rapid Synthesis of Novel and Known Coumarin-3-carboxylic Acids Using Stannous Chloride Dihydrate under Solvent-Free Conditions

by Bahador Karami*, Mahnaz Farahi, and Saeed Khodabakhshi

Department of Chemistry, Yasouj University, Yasouj, Zip Code: 75918-74831, P.O. Box 353, Iran (phone: +98-7412223048; fax: +98-7412242167; e-mail: karami@mail.yu.ac.ir)

Various coumarin-3-carboxylic acid (=2-oxo-2*H*-1-benzopyran-3-carboxylic acid; CcaH) derivatives have been synthesized in good yields using catalytic amounts of SnCl₂ · 2 H₂O under solvent-free conditions. This inexpensive, nontoxic, and readily available catalytic system (10 mol-%) efficiently catalyzes the *Knoevenagel* condensation and intramolecular cyclization of various 2-hydroxybenzaldehydes or acetophenones with *Meldrum*'s acid. High product yields, use of inexpensive and safe catalyst, and solvent-free conditions display both economic and environmental advantages.

Introduction. – Regarding several reports on the effective applications of $SnCl_2$ as an inexpensive *Lewis* acid catalyst for one-step synthesis of quinolines [1], synthesis of 1,3-dithiolane [2], esterification of carboxylic acids with alcohols [3], and cyclization of nitro arenes *via* N,N bond formation [4], here, we present a simple and environment-friendly method for the synthesis of novel and known coumarin-3-carboxylic acid derivatives using $SnCl_2 \cdot 2 H_2O$ under solvent-free conditions.

Results and Discussion. – Solid-phase organic synthesis (SPOS) has emerged as powerful tool for combinatorial drug discovery allowing the preparation of highly diverse compound libraries [5-7]. The use of solid-phase or solvent-free systems obviously reduces labor cost, eliminates hazards, and improves ventilation problems in confined spaces.

In connection with our studies on the synthesis of organic compounds under mild and environment-friendly conditions [8–10], we now found that catalytic amounts of $SnCl_2 \cdot 2 H_2O$ can be used as an efficient, safe, and very cheap catalyst for the *Knoevenagel* condensation and intramolecular cyclization of 2-hydroxybenzaldehydes and acetophenones, **1**, or 2-hydroxynaphthalene-1-carbaldehyde (**2**) with *Meldrum*'s acid (**3**) under solvent-free conditions to afford coumarin-3-carboxylic acid (=2-oxo-2*H*-chromene-3-carboxylic acid = 2-oxo-2*H*-1-benzopyran-3-carboxylic acid) derivatives **4** or **5** in good yield (*Scheme 1*). It should be mentioned that all of the coumarin-3carboxylic acids form intramolecular H-bonds [11].

To improve the effectiveness of this method by preventing chemical waste, it was important to investigate optimal reaction conditions. For the elucidation of simple and suitable conditions for synthesis of coumarin-3-carboxylic acid derivatives using $SnCl_2 \cdot$ 2 H₂O, the treatment of salicylaldehyde (=2-hydroxybenzaldehyde; **1** with R = H, X =H) with **3** was chosen as a model reaction (*Table*; product **4a**). First, we found that, in

^{© 2012} Verlag Helvetica Chimica Acta AG, Zürich

Scheme 1. Synthesis of Coumarin-3-carboxylic Acids under Solvent-Free Conditions

the absence of the catalyst, the reaction was not completed after a long reaction time even at high temperature. After examining the various amounts of SnCl \cdot 2 H₂O and a wide range of temperatures, it was found that this reaction can be efficiently carried out by adding 10 mol-% of catalyst at 80° under solvent-free conditions in a short time span of 60 min. After optimization of the reaction, condensation of various compounds 1 or 2-hydroxynaphthalene-1-carbaldehyde (2) with 3 was carried out to afford coumarin derivatives 4 or 5. The results are collected in the *Table*.

The synthesized compounds were characterized by IR and NMR spectroscopy, and their spectra were in good agreement with the expected structures. The NMR spectra were recorded in both CDCl₃ and (D₆)DMSO with TMS as internal standard. It should be mentioned that the spectrum of coumarin-3-carboxylic acid **4k** in (D₆)DMSO did not exhibit a clear resonance signal for the H-atom of COOH group (*Fig., a*), whereas the signal in CDCl₃ appeared at 12.26 ppm (*Fig., b*). This observation was also made for compounds **4a**, **4f**, **4c**, and **5**.

The ¹H-NMR spectrum of compound **4k** showed the signal for MeO–C(5) at δ (H) 4.02 (*Fig.*, *b*). The three distinct signals in the range of δ (H) 7.72–6.84 corresponded to H–C(6,7,8), whereas the signal for H–C(4) appeared strongly deshielded as *s* at δ (H) 9.32, in agreement with its β -position with respect to the CO group.

Encouraged by the above results, we focused on the synthesis of the novel bi(coumarin)-3,3'-dicarboxylic acid (9) *via* 5,5'-bi(salicylaldehyde) (8) under solvent-free conditions. For this, we first had to prepare also novel 8 *via* formylation of 1,1'-biphenyl-4,4'-diol (6) with hexamethylenetetramine (=1,3,5,7-tetraazatricyclo[3.3.1.1^{3,7}]-decane; 7) in TFA under N₂ (*Scheme 2*). The yield of 8 under these conditions amounted to 50%. The reaction of 8 with 3 in the presence of $SnCl_2 \cdot H_2O$ gave the expected 6,6'-bicoumarin-3,3'-carboxylic acid in a yield of 80% (*Scheme 2*).

A plausible mechanism for the $SnCl_2$ -catalyzed syntheses of coumarin-3-carboxylic acids is proposed in *Scheme 3*.

Conclusions. – In summary, a new rapid method for the synthesis of novel and known coumarin-3-carboxylic acid derivatives with $SnCl_2 \cdot 2 H_2O$ as inexpensive

Table. Synthesis of Coumarin-3-carboxylic Acids Using $SnCl_2 \cdot 2 H_2O$ (10 mol-%) at 80° Under Solvent-
Free Conditions

¹)	Time [min]	Yield [%]	M.p. [°] ^b)
0_0	60	80	188–189 ([12]: 191–192)
	60	87	259–260 ([13]: 261–263)
0 0 0 0	100	86	197–198 ([14]: 209–210)
соон	105	75	153–154 ([13]: 151–152)
	70	85	195–197 ([13]: 195–196)
COOH	70	80	193–194 ([12]: 192–194)
COOH	70	82	120–121 ([13]: 120–121)
о о соон	110	80	162–163 ([13]: 161–162)
	60	90	233–234 ([13]: 234–235)
	110	75	126–127°)
о о соон	30	92	221 – 222°)
СООН	90	85	195–196 ([12]: 216–218)
ed p	COOH	COOH 90 90 0 roducts. ^b) In parentheses, reported	COOH 90 85 0 0 roducts. ^b) In parentheses, reported m.p. ^c) Novel co

Figure. ¹H-NMR Spectra (400 MHz) of compound **4k** a) in $(D_6)DMSO$ and b) in $CDCl_3$

Scheme 2. Synthesis of 5,5'-Bi(salicylaldehyde) (8) and 6,6'-Bi(coumarin)-3,3'-dicarboxylic Acid (9)

catalyst under solvent-free conditions has been described. This simple catalytic system is remarkably tolerant to a variety of functional groups on the hydroxybenzaldehydes or acetophenones, and offers significant advantages such as low catalyst loading, high

Scheme 3. Proposed Mechanism for the Synthesis of Coumarin-3-carboxylic Acid Derivatives Using $SnCl_2 \cdot 2 H_2O$ as Catalyst

yields, avoidance of organic solvents, short reaction times, and operational simplicity. Therefore, in employing a small amount of safe and inexpensive catalyst under solvent-free conditions, this protocol is economic and environment-friendly. Further investigations toward the synthesis of biologically active substances by using the present method are currently in progress.

We thank the Yasouj University for partial support of this work.

Experimental Part

General. The chemicals were purchased from Merck, Fluka, and Aldrich. The reactions were monitored by TLC (silica gel 60 F_{254} (SiO₂); hexane/AcOEt). IR Spectra (KBr disc): FT-IR Shimadzu-470 spectrometer. NMR Spectra: Bruker-Instrument DPX-400 Avance 2 model. All of the products (except novel compounds) were characterized by comparison of their spectra and physical data with those reported in the literature [12–14].

Preparation of Coumarin-3-carboxylic Acid Derivatives 4 and 5. A mixture of 1 or 2 (1 mmol), 3 (2 mmol), and $SnCl_2 \cdot 2 H_2O$ (10 mol-%) was stirred and heated at 80° in a preheated oil bath for an appropriate time (*Table*). After completion of the reaction as indicated by TLC (hexane/AcOEt 4:1), the mixture was dissolved in hot AcOEt, and the catalyst was separated by simple filtration. The solvent was evaporated, and the crude products 4 and 5 were purified by recrystallization from AcOEt.

Selected Spectral Data. Coumarin-3-carboxylic Acid (=2-Oxo-2H-1-benzopyran-3-carboxylic Acid; **4a**). IR: 3500-2600w, 1702vs, 1436vs, 1217vs, 1173vs. ¹H-NMR ((D₆)DMSO): 8.53 (s, 1 H); 7.7 (d, J = 7.6, 1 H); 7.51 (t, J = 7.2, 1 H); 7.23 - 7.17 (2d, J = 8.6, 2 H). ¹³C-NMR ((D₆)DMSO): 164.5; 157.2; 154.9; 148.9; 134.8; 130.6; 125.3; 118.4; 116.6.

8-*Methoxycoumarin-3-carboxylic Acid* (=8-*Methoxy-2-oxo-2*H-*1-benzopyran-3-carboxylic Acid*; **4c**). IR: 3500–2600w, 1760vs, 1695vs, 1620vs, 1590vs, 1200vs, 1110vs. ¹H-NMR ((D₆)DMSO): 8.55 (*s*, 1 H); 7.26–7.18 (*m*, 3 H); 7.14 (*t*, *J* = 8, 1 H); 3.74 (*s*, 1 H). ¹³C-NMR ((D₆)DMSO): 149.3; 140.7; 144.3; 125.2; 121.6; 119.0; 116.7; 56.6.

7-*Methoxycoumarin-3-carboxylic Acid* (=7-*Methoxy-2-oxo-*2H-1-*benzopyran-3-carboxylic Acid*; **4f**). IR: 3434, 3045, 2955, 1732, 1691, 1618, 1217. ¹H-NMR ((D_6)DMSO): 8.71 (*s*, 1 H); 7.82 (*d*, *J* = 8.4, 1 H); 7.00 (*dd*, *J* = 5.6, 2.4, 2 H); 13.0 (*s*, 1 H); 3.88 (*s*, 3 H). ¹³C-NMR ((D_6)DMSO): 169.9; 169.5; 162.4; 162.1; 154.2; 136.7; 119.0; 118.5; 116.8; 105.5; 61.4. 7-Hydroxy-4-methylcoumarin-3-carboxylic Acid (= 7-Hydroxy-4-methyl-2-oxo-2H-1-benzopyran-3-carboxylic Acid; **4j**). IR: 3400–2600w, 1726vs, 1630vs, 1600vs, 1500vs, 1160vs, 1060vs. ¹H-NMR ((D_6)DMSO): 12.40 (s, 1 H); 10.43 (s, 1 H); 7.54 (d, J = 8.8, 1 H); 6.16 (dd, J = 6.8, 2.0, 1 H); 6.03 (d, J = 2.0, 1 H); 2.30 (s, 3 H). ¹³C-NMR ((D_6)DMSO): 169.5; 165.5; 164.3; 134.1; 113.3; 108.6; 102.8; 26.8.

5-*Methoxycoumarin-3-carboxylic Acid* (=5-*Methoxy-2-oxo-2H-1-benzopyran-3-carboxylic Acid*; **4k**). IR: 3350-2400w, 1760vs, 1690vs, 1620vs, 1220vs. ¹H-NMR (CDCl₃): 12.26 (s, 1 H); 9.32 (s, 1 H); 7.70 (t, J = 8.4, 1 H); 7.04 (d, J = 8.4, 1 H); 6.85 (d, J = 8.4, 1 H); 4.01 (s, 3 H). ¹³C-NMR ((D₆)DMSO): 164.2; 157.3; 156.6; 155.9; 143.2; 136.1; 116.2; 108.3; 106.3; 56.9.

Benzo[f]*coumarin-2-carboxylic Acid* (=3-*Oxo-3*H-*benzo*[f]-1-*benzopyran-2-carboxylic Acid*; **5**). IR: 3046w, 1748vs, 1683vs, 1571vs, 1217vs. ¹H-NMR ((D₆)DMSO): 13.12 (*s*, 1 H); 9.37 (*s*, 1 H); 8.59 (*d*, J = 8.4, 1 H); 8.31 (*d*, J = 9.2, 1 H); 8.08 (*d*, J = 7.6, 1 H); 7.77 (*t*, J = 7.2, 1 H); 7.65 (*t*, J = 7.6, 1 H); 7.59 (*d*, J = 9.2, 1 H). ¹³C-NMR ((D₆)DMSO): 164.8; 157.3; 155.5; 144.1; 136.3; 129.5; 126.9; 122.7; 117.8; 116.9; 112.6.

Preparation of 5,5'-Bi[salicylaldehyde] (=4,4'-Dihydroxy-1,1'-biphenyl-3,3'-dicarbaldehyde; **8**). A soln. of 1,1'-biphenyl-4,4'-diol (**6**; 10 mmol), hexamethylenetetramine (=1,3,5,7-tetraazatricyclo-[3.3.1.1^{3,7}]decane; **7**; 15 mmol), and CF₃COOH (TFA; 30 ml) was stirred for 24 h under N₂. Then, 4m aq. HCl (100 ml) was added to the mixture and stirred for 20 min. Finally, the mixture was poured into CH₂Cl₂, and the org. phase containing **8** was extracted. After evaporation of the solvent, pure **8** was obtained by column chromatography (CC; hexane/AcOEt 3:7) in 50% yield. M.p. 106–108°. IR: 3428–3085w, 2850m, 2738w, 1654vs, 1469s, 1176s, 767s. ¹H-NMR (250 MHz, (D₆)DMSO): 10.75 (s, 1 H); 10.28 (s, 1 H); 7.90–6.76 (m, 3 H).

Preparation of 6,6'-Bi[coumarin]-3,3'-dicarboxylic Acid (=2,2'-Dioxo-2H,2'H-6,6'-bichromene-3,3'dicarboxylic Acid; **9**). A mixture of **8** (1 mmol), **3** (2 mmol), and $SnCl_2 \cdot 2 H_2O$ (10 mol-%) was stirred and heated at 80° in a preheated oil bath for 220 min. After completion of the reaction as indicated by TLC (hexane/AcOEt 4:1), the mixture was dissolved in hot AcOEt, and the catalyst was separated by simple filtration. The solvent was evaporated and crude **9** was purified by recrystallization from AcOEt. Yield: 80%. M.p. 220–222°. IR: 3500–3000w, 1738vs, 1680vs, 1610s, 1564s, 1202m. ¹H-NMR (CDCl₃): 12.29 (s, 2 H); 9.02 (s, 2 H); 8.02–7.44 (m, 6 H). ¹³C-NMR ((D₆)DMSO): 164.4; 157.1; 154.3; 148.9; 137.8; 137.1; 133.0; 129.5; 129.4; 128.3; 127.1; 126.5; 119.0; 118.8; 117.1.

REFERENCES

- [1] B. R. McNaughton, B. L. Miller, Org. Lett. 2003, 5, 4257.
- [2] G. Bez, D. Gogoi, Tetrahedron Lett. 2006, 47, 5155.
- [3] C.-S. Cho, D.-T. Kim, H.-J. Choi, T.-J. Kim, S.-C. Shim, Bull. Korean Chem. Soc. 2002, 23, 539.
- [4] D. Sawant, R. Kumar, P. R. Maulik, B. Kundu, Org. Lett. 2006, 8, 1525.
- [5] F. Guillier, D. Orain, M. Bradley, Chem. Rev. 2000, 100, 2091.
- [6] R. E. Sammelson, M. J. Kurth, Chem. Rev. 2001, 101, 137.
- [7] R. E. Dolle, J. Comb. Chem. 2003, 5, 693.
- [8] M. Montazerozohori, B. Karami, Helv. Chim. Acta 2006, 89, 2922.
- [9] S. E. Mallakpour, B. Karami-Dezcho, B. Sheikholeslami, Polym. Int. 1998, 45, 98.
- [10] B. Karami, S. Khodabakhshi, M. Nikrooz, Polycyclic Aromat. Compd. 2011, 31, 97.
- [11] A. J. Dobson, R. E. Gerkin, Acta Crystallogr., Sect. C 1996, 52, 3081.
- [12] A. Shaabani, R. Ghadari, A. Rahmati, A. H. Rezayan, J. Iran. Chem. Soc. 2009, 6, 710.
- [13] R. Hekmatshoar, A. Rezaei, S. Y. Shirazi-Beheshtiha, *Phosphorus, Sulfur Silicon Relat. Elem.* 2009, 184, 2491.
- [14] A. Song, X. Wang, K. S. Lam, Tetrahedron Lett. 2003, 44, 1755.

Received August 29, 2011